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The nitrogenases catalyze the transformation of dinitrogen to
ammonia under mild conditiods® A key to the function of
nitrogenases is the efficient electron-transfer system, where the
novel P-clusters serve as an electron transmitter from the Fe-protein,
with ATP bound, to the FeMo-ct:!! The iron sulfide proteins,
which are involved in electron-transfer processes, are represented
by those consisting of [4Fe4S], [3Fe-4S], and [2Fe-2S] clusters.
The [8Fe-7S] core of P-clusters, either in the reduced forr) (P
or in the two-electron oxidized form {P), is uniqgue among the
known biological [Fe-S] clusters and consists of two [4F8S]
incomplete cubanes linked by a hexa-coordinate sulfur agom (- Scheme 1
S) and two bridging cysteinyl ligand&13 Although the [4Fe-4S] o x@ ))?(‘
and [2Fe-2S] clusters are stable and are readily prepared by 5 - *@*/SS S s
spontaneous self-assembly reactions in polar aprotic solvents, the 2 3
core structure of the P-clusters has been believed to be unstable.
The extrusion of the [8Fe7S] cluster from the FeMo-protein using g™ TS| , ' 2
a thiol-exchange method resulted in the conversion to conventional * s~ s | (™~ 5¥) Mg TMS
[4Fe—4S] cubanes i 90% yield* The synthesis of the P-cluster 5 )%L /N\
has not been achieved in vitro, because the required gene products ° / * / " TMS~N,Fe_SST59 Fe\/\:}e_N/TMS
have yet to be identifie#h16 The P-cluster geometry is so unusual s 26 % yild a5 crysals TMS'J'«F;.S/;/;:7 Sﬁi&\s/sqﬁfms
that it has been thought to exist only in certain protein environments, N \,”-./ "
and construction of the [8F€7S] core has posed a challenge for ™S TMS
synthetic chemistry. The known model iron sulfide clusters, which \ﬁﬁ 5ol 4/3)\5«& ’s
may be close to the [8F€7S] structure, are limited to an S-bridged & TMS;NFQ{S:F@;S‘;F@?N’TME v/ / I

bis-cubane [8Fe9S] cluster and a fused bis-cubane [8f8S] e *ﬁ}“ﬁ% ™ 33 % yild as cystas
3

Figure 1. A molecular view ofl. The methyl groups of amide and tmtu
are omitted for clarity.

clustert”18The M/Fe/S (M= V, Mo) clusters, [(TpiMFesSy(SH)™
(n = 3, 4), were shown to contain aj¥e;Ss framework topologi-
cally analogous to the [8F€7S] corel® Here we report that the
structure of the inorganic core of P-cluster can be generated by a
self-assembly reaction of Fe(ll) bis-amide, tetramethylthiourea,
2,4,6-triisopropylbenzenethiol, and elemental sulfu).(S

Addition of tetramethylthiourea (tmtu), 2,4,6-triisopropylben-
zenethiol (HStip), and elemental sulfur to a toluene solution of iron-
(1) bis-amide, FEN(SiMes),}2,2° in the ratio of 8(Fe):3(tmtu):
12(HStip):7(S) leads to an immediate color change from green to
dark purple and then to dark brown over the period of 2 days.

isolable product, in 96% yield as crystals, in our case. Thus, slight
modification of the mole ratio gave rise to the entirely different
iron sulfide cluster. Interestingly, formation Bfivas not discernible

in the 8(Fe):3(tmtu):12(HStip):7(S) reaction system, althoRgh
less soluble and more readily crystallized in toluene thamhe
clusterl was alternatively synthesized in 33% yield as crystals from
the reaction of the known trinuclear ferrous cluste{ RESiMe;),} »-
(u-Stip) (3)?? with tmtu, HStip, and elemental sulfur in the mole
ratio shown in Figure 1. Indeed, the initial color of the solution in
?he 8(Fe):3(tmtu):12(HStip):7(S) reaction system is very similar to
that of 3.

According to the X-ray structure analysis (Figure 1), cludter
comprises two [4Fe3S] units connected by ae-sulfur (S1)
highly air/moisture sensitive and degrades to an insoluble black th.rou.gh |nter§ct|ons with six irons, and by twq am|de.||gands each

bridging two iron atoms. There are two terminal amides and two

material at room temperature in solution even under inert atmo- tmtu molecules completing the coordination sphere of irons. Bein
sphere. This reaction system is analogous to that reported for the . . P g P o 9
crystallized in théP2/c space group, a crystallograpltle axis runs

! - 0 .

Egg{gg(ﬁ'\is)z}?gtrpfl(szf Zlavc]ﬁ;rtera:h[fﬁi};lrj:{?geof Ig(s;z;,: through ye-Sll. The [8Fe-7S] cluster core ofl reproduces very

6(tmtu):16(HStip):8(S) was employed. We have confirmed that the yvell the basic core geometry of_thé‘-l@luster,llﬁ except tha_t the

reaction system with this mole ratio in fact produ@as a sole iron atoms of P carry six cysteinyl sulfurs, two at the bridging
positions and four at the terminal positions.

t Nagoya University. Table 1 compares the important bond length4 ahd P. The
*Tokyo Metropolitan University. mean Fe-S bond distance qfie-S1 in1 (2.373 A) is somewhat

twice with 10 mL of hexane, followed by crystallization atL0
°C from toluene generated an [8FéS] complex { N(SiMej3),} -
{SC(NMe),} Fe;Ss]2(ue-SK u-N(SiMes),} - (1) as analytically pure
black crystals (28%) (Scheme 1). The neutral cluster compisx
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TableNl. Comparisonlzof the Selected Bond Distances (A) of 1 and different from our model, consisting of complicated subspectra
the PA-Cluster in Kpl corresponding to a paramagnetic state, indicating that the two Fe-

1 (Il sites in the [8Fe-7S] core are not antiferromagnetically
~CREP TS
FaZ Fe2
; I3 Fed s1

V‘?’E’/ —e coupled. There are two possible explanations for this difference.
.'_"
Fed* 7’/

One is that the bridging amides in our model allow antiferromag-
netic coupling between Fe(lll) ions resulting in a nearly diamagnetic
cluster, even though the Fe(lll) sites are on opposite ends of the

] ' cluster, while the bridging thiolates of?P do not allow such
[ o 1 ': N - ) . .
e P e coupling. The second is that the highly distorted structure suggested
Fe2 Fe3 Fed Fe2 Fe3 Fed Fe6 Fe7 Fe8 for the P*-clustef® inhibits antiferromagnetic coupling between

S1 23719(7) 2.3969(7) 2.3489(5) S1 252 2.40 2.42 S1_2.41 2.49 2.47 Fe(III). ions. Further work will be required to shed light on this
Fel 2.8150(6) 2.8263(7) 2.7346(6) Fel 2.75 2.67 2.79 Fe5 2.82 2.79 2.85 question.

Fe2 2.7020(6) 2.6433(6) Fe2 2.58 2.52 Fe6 2.52 2.52
Fe3 2.6507(6) Fe3 2.53 Fe7 2.58 Acknowledgment. This research was supported by a Grant-in-
Fe2-Fe3 2.7903(6) Fe2Fe7 294 Fe3Fe6 292 Aid for Scientific Research on Priority Area (No. 14078211

“Reaction Control of Dynamic Complexes”) from the Ministry of
Education, Culture, Sports, Science, and Technology, Japan. We

shorter than that in'P(2.45 A), while the other FeS distances thank R. E. Cramer at the University of Hawaii for his comments.

are comparable betwedn(av. 2.285 A) and P (av. 2.31 A). The
S1 sulfur is surrounded by six iron atoms in a severely distorted Supporting Information Available: Details of synthesis and
octahedral arrangement: 143.64(%fe4-S1-Fe4”) and 71.62-  cparacterization, and crystallographic data IqPDF and CIF). This

(2)° (Fe2-S1—Fe3*) for 1, 157 (Fe4-S1-Fe8) and 72 (Fe2- material is available free of charge via the Internet at http:/pubs.acs.org.
S1-Fe7) for P. The Fe-Fe distances within each [4F&S] unit

can be classified into two groups. The longer#& bonds are
those associated with the iron atoms at both ends of the cluster,
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